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Temperature variability impacts the distribution and persistence of
the mountain snowpack, which critically provides snowmelt-
derived water resources to large populations worldwide. Warmer
temperatures decrease the amount of montane snow water
equivalent (SWE), forcing its center of mass to higher elevations.
We use a unique multivariate probabilistic framework to quantify
the response of the 1 April SWE volume and its centroid to a 1.0 to
2.0 °C increase in winter air temperature across the Sierra Nevada
(United States). A 1.0 °C increase reduces the probability of ex-
ceeding the long-term (1985–2016) average rangewide SWE volume
(15.7 km3) by 20.7%. It correspondingly is 60.6% more likely for the
centroid to be higher than its long-term average (2,540 m). We
further show that a 1.5 and 2.0 °C increase in the winter tempera-
ture reduces the probability of exceeding the long-term average
SWE volume by 31.0% and 41.1%, respectively, whereas it becomes
79.3% and 89.8% more likely that the centroid will be higher than
2,540 m for those respective temperature changes. We also charac-
terize regional variability across the Sierra Nevada and show that
the northwestern and southeastern regions of the mountain range
are 30.3% and 14.0% less likely to have 1 April SWE volumes exceed
their long-term average for a 1.0 °C increase about their respective
average winter temperatures. Overall, the SWE in the northern Si-
erra Nevada exhibits higher hydrologic vulnerability to warming
than in the southern region. Given the expected increases in moun-
tain temperatures, the observed rates of change in SWE are expected
to intensify in the future.
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Seasonal snowmelt represents a significant component of the
water resources in the western United States, contributing

∼53% of the total runoff (1). Among several environmental
controls (e.g., temperature, solar radiation, humidity, etc.) and
physiographic characteristics (e.g., elevation, slope, and aspect),
temperature variability plays an important role in regulating
montane snow water equivalent (SWE) (2, 3). As temperature
increases in the spring and summer, water is released from its
winter SWE storage as seasonal snowmelt. An estimated 70% of
total runoff from mountains originates as snow (1).
Across California, Wang et al. (4) found that the average

minimum winter temperature trend (1920–2015) increased faster
than the maximum (1.2–1.9 °C per century vs. −0.30–1.2 °C per
century, respectively). Previous studies (e.g., refs. 5–7) showed
shifts in the timing of peak streamflow related to temperature
variability across the mountainous western United States. Also,
drought in the southwestern United States is not uncommon and
is often associated with warm temperatures (8). As a result, warmer
than average winters can result in lower than average SWE ac-
cumulation (9) such as during the severe 2014–2015 California
drought that corresponded to anomalously low snowfall and SWE
accumulation in the Sierra Nevada (10–13). Although the timing
of peak SWE (5) and streamflow vary interannually, the 1 April
SWE is often used as an indicator of the seasonal melt-derived
runoff across the western United States (14).
Changes in SWE and their implications are critical to study

in mountain ranges like the Sierra Nevada since its snowmelt

provides an estimated 75% of the agricultural water for California
(15) and 60% of the water resources in Southern California (16).
However, existing in situ observations in such mountain ranges are
generally located at low- to midelevations in clearings, which often
results in a misrepresentation of the spatial distribution of SWE
across a region (17). The spatial incompleteness and undersampling
of high-elevation SWE poses challenges for water resources man-
agement globally. Spatially distributed snow data can be used to
estimate the SWE volume and complement measurements from
existing networks for decision-making. Such data can aid in un-
derstanding how the center of mass of the SWE volume or its
centroid (expressed as an elevation) shifts upslope/downslope with
hydrometeorological variability. If the centroid is forced to higher
elevations than on average, the existing in situ network will sample
less of the snowpack and the SWE volume will likely be smaller
than average (i.e., less water stored for the spring and summer). We
examine such relationships here.
Concern has been raised about the amount of water that may

be stored in the future snowpack across the globe as tempera-
tures are expected to continue to rise in mountainous regions
(18). Bonfils et al. (19) concluded that warming across the
montane western United States cannot be explained by internal
climate variability alone. Through teleconnections, future
warming of the Arctic sea ice may modulate large-scale atmo-
spheric circulation that decreases precipitation across distant
regions such as California (20). Hence, the Paris Agreement (21)
further raises questions about the implications of a global 1.5 °C
rise in temperature relative to the preindustrial level as they
relate to water resources vulnerability. Additional research into
the relative implications of 1.5 °C as opposed to 2.0 °C of
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warming is warranted, since the former condition has been less
widely examined (22). Such discussions motivate our study, where
we characterize the vulnerability of SWE (i.e., amount and ele-
vation of its centroid) to temperature variability across the Sierra
Nevada over a historical period. Our analysis uses a historical
spatially distributed snow data set and while it may provide insight
into possible future SWE and temperature relationships, analysis
of such relationships is left for forthcoming research.
We characterize the extent to which hydrologic variables re-

spond to different levels of warming. We use the terms vulner-
ability or hydrologic “risk” to characterize changes in the
likelihood that the long-term average SWE volume hSWEi will
be exceeded (i.e., exceedance probability or Pe) for various
winter temperature conditions. The terms are also used to
quantify changes in the nonexceedance probability (Pne) or
probability that the SWE centroid, zc, will be lower than its long-
term average value hzci for those same temperatures. Herein,
greater risk corresponds to a higher sensitivity of the snowpack
to warming.
The driving question of this study is, To what extent does the

hydrologic risk associated with the SWE volume vary rangewide
and spatially across the Sierra Nevada (e.g., windward vs. lee-
ward side, northern vs. southern basins, etc.) given a 1.0–2.0 °C
increase in temperature? Using a conditional multivariate ap-
proach (Materials and Methods), we examine changes in the
distribution of the SWE volume and centroid to break down the
overarching question as follows: (i) What is the likelihood that
the 1 April SWE volume will exceed its long-term average value
given different average winter air temperatures across this
maritime mountain range? (ii) What is the likelihood that the
SWE centroid will occur at elevations lower than its long-
term mean given an increase in temperature?

Sierra Nevada
We use the 90-m (gridded), daily Sierra Nevada snow reanalysis
[described briefly in Materials and Methods and in detail by
Margulis et al. (23)] to estimate the 1 April SWE volume and
centroid. The average November–March (winter) air tempera-
tures are also derived from this data set, providing physical
consistency. In situ snow sensor observations were not used to
derive the snow reanalysis, but rather for independent verifica-
tion (10, 23). The reanalysis spans 32 water years (WYs;
October–September) 1985–2016. The SWE centroid presented
herein represents the centroid above 1,500 m. This elevation is
the lowest provided by this data set as it is typically the lowest
seasonally snow-covered elevation in the Sierra Nevada (24).
During times when the snow line extends below 1,500 m, the
centroid may be lower than presented here.
Across the Sierra Nevada, SWE and snowfall have strong re-

gional and elevational signatures (refs. 2, 10, 25, and 26, etc.). To
better understand the spatial variability of the hydrologic risk for
various precipitation regimes in the Sierra Nevada [e.g., wind-
ward (western) vs. leeward (eastern) sides, higher (southern) vs.
lower (northern) elevations, etc.], we divided the 20 basins out-
lined in Fig. 1A into four study domains: northwest (NW),
southwest (SW), northeast (NE), and southeast (SE). Fig. 1B
shows the normalized elevational distribution of the drainage
area above 1,500 m, which greatly varies by region. Only ∼4%
and 16% of the area in the NW and NE, respectively, is located
above 2,500 m, while 36% and 48% of the area in the SE and SW
is located above 2,500 m, respectively. These large areal differ-
ences contribute to the regional variability in hydrologic risk
associated with the SWE volume and centroid and warming.

Evolution of the SWE Volume Centroid
Although we primarily characterize the 1 April snowpack, Fig.
1C presents the 32-y average time series (solid lines) and in-
terannual variability (shaded areas) of the SWE volume centroid

(zc) from November to August to better understand its location
on 1 April relative to other times of the year. Near the start of
the accumulation season, the highest elevations receive snowfall
causing the SWE volume to be located at these highest eleva-
tions. The centroid moves downslope with time as lower eleva-
tions receive snowfall and SWE accumulates over a larger area.
Minimal variability occurs January–March (Fig. 1C), when
temperatures are very cool and storms yield snowfall across
nearly all elevations (10). Beginning in the spring (approximately
April and May), the interannual variability of zc begins to in-
crease as low-elevation SWE melts and the centroid recedes
toward higher elevations. SWE is again stored at higher eleva-
tions in the spring and summer until it melts. Generally, zc takes
on higher elevations in the southern Sierra Nevada (light and
dark blue) than in the northern basins (purple and red) due to
elevational differences (Fig. 1 A and B).
For additional perspective, we consider the most densely

sampled elevations across the Sierra Nevada based on the Cal-
ifornia Department of Water Resources in situ observations
(cdec.water.ca.gov/snow/current/snow/index.html). Within this
network, the average snow pillow elevation is ∼2,300 m and
these observations serve as an indicator of the amount of SWE
across the range, rather than a direct measure of the SWE vol-
ume. Over 60% of the sensor measurements occur below
2,540 m, which is the average elevation of zc on 1 April (Figs. 1C
and 2). Snow courses in the Sierra Nevada have a similar ele-
vational distribution. Thus, on average, about half of the SWE
across the range is located at elevations above the majority of the
sampling network. Also, not all of the basins in Fig. 1A have
observations.
Undersampling the highest elevations with the current in situ

network can misrepresent the amount of SWE stored and where
its center of mass is located in space and time (Fig. 1C). Al-
though high elevations make up a smaller fraction of the total
area than lower elevations (Fig. 1B), they will play an in-
creasingly important role in a warmer climate since warmer
temperatures generally melt SWE at lower elevations resulting in
a higher snow line and SWE centroid (24). Thus, the northern

Fig. 1. (A) Elevation map for the Sierra Nevada above 1,500 m. Color coding
denotes regionally grouped basins. This color scheme is used throughout all
figures. White pixels are located below 1,500 m or outside of the study
domain. (B) Fraction of area above each elevation (z). (C) Temporal move-
ment of the SWE volume centroid (zc). The long-term average and inter-
quartile range of zc are demarcated by solid lines and shaded areas,
respectively. Only pixels above 1,500 m are considered in this study.
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Sierra Nevada and in particular the NW, with the lowest winter
SWE centroid (Fig. 1C), are likely most susceptible to warming.
Also, the strongest correlations between winter temperature and
both 1 April SWE and zc occur in the NW (SI Appendix, Fig. S3).
Not only do warmer temperatures shift the partitioning of total
precipitation from snowfall toward rainfall, but also snow that
occurs at these elevations would likely melt sooner under warmer
conditions. While other hydrometeorological drivers beyond tem-
perature (e.g., precipitation) impact SWE, the focus of this study is
on understanding SWE distributions conditioned on temperature.
In fact, at the highest elevations, a larger proportion of the total
precipitation becomes SWE than at lower elevations.
Since water managers typically use the 1 April SWE as a

metric for estimating melt-derived runoff, the remainder of this
study focuses on probabilistically assessing the vulnerabilities/
sensitivities of the 1 April SWE storage (amount and centroid) in
relation to the average winter temperature.

SWE Volume, Centroid, and Temperature Characterization
Fig. 2 presents the regional climatology and interannual vari-
ability of the 1 April SWE volume and centroid and average
winter temperature. Strong, statistically significant (P< 0.05)
negative correlations exist between the SWE volume and zc with
the regional correlation coefficients ranging from −0.66 (NW)
to −0.80 (SE). A weaker rangewide correlation exists (r=−0.53)

due to differences among the regions (e.g., elevation) that greatly
contrast between the northern and southern Sierra Nevada and
degrade its strength relative to the individual regions. None-
theless, a smaller SWE volume tends to correspond to a higher
centroid elevation than when a larger SWE volume occurs.
The peak elevation of a region physically constrains the

maximum possible elevation of zc. As such, it is expected that zc
will often be lower in the northern Sierra Nevada. Warmer
temperatures reduce the SWE volume, thereby increasing the
height of its centroid (Fig. 2 and SI Appendix, Fig. S3). Stronger
correlations exist between temperature and zc than between
temperature and SWE (SI Appendix, Fig. S3). Approximately
38% (SE) to 69% (NW) of the variance in zc is explained by
temperature variability, whereas temperature only explains
∼14% (SE) to 37% (NW) of the variance in SWE. These rela-
tionships are consistent with Mote et al. (6), who found strong
correlations between the intermittent melt and the accumulated
1 April SWE in the Sierra Nevada. Regional differences in in-
termittent melt rates/patterns contribute to variability in the
strength of the correlations. Using the Theil–Sen trend estima-
tor, a decreasing SWE trend from WY 1985–2015 of ∼ −22 km3

SWE per century is found, which agrees well with that of ∼ −23
and −16 km3 per century from Wang et al. (4) (estimated using
the data sets with the highest and lowest average SWE volumes
from figure S7 in ref. 4 for these years, respectively).
Although 1 April is often taken to represent the end of the

accumulation season, the 32-y average day-of-peak SWE across
each region occurs earlier (9–16 March) with individual regions
yielding extreme early (i.e., 21 December) to late (i.e., 9 May)
dates for a given year. Hence, the melt season often begins be-
fore April. While our focus is on the accumulation season, other
environmental controls impact the SWE distribution and melt
rate and their relative importance fluctuates across seasons,
mountain ranges, etc. For instance, Painter et al. (27) found that
the radiative forcing by dust was a stronger control on snowmelt
than temperature in the Upper Colorado River Basin.
With the western side of the mountain range facing into the

prevailing winds, the NW and SW have larger average SWE
volumes (dashed vertical lines in Fig. 2) than the eastern basins
in the rain shadow. Corresponding to the higher mean elevation
in the eastern basins (relative to the western basins, Fig. 1B), the
NE has a higher average centroid than the NW on 1 April (Figs.
1C and 2). The same relationship is observed between the SE
and SW. Also, the western Sierra Nevada has greater interannual
variability of SWE and centroid values than the eastern regions
(Fig. 2). In all regions, the extremely warm 2015 winter was the
warmest winter season, which corresponded to the highest SWE
centroid in the Sierra Nevada during this record. However, the
coolest winter (WY 1985) neither corresponded to the largest
SWE nor lowest zc in any of the regions.
Fig. 2 (Bottom Right) summarizes the interannual variability of

the average winter temperature. Only the NW has a positive
long-term average temperature (i.e., 0.6 °C), while the other
basins have subzero average temperatures (hTai, “×” symbols),
with the lowest occurring in the SW at −0.9 °C. The difference in
hTai values between the NW and SW is ∼1.6 °C, which is 5.4
times larger than the difference between the NE and SE. While
the rangewide temperatures span more than 2 °C about its mean
value, this is not the case for all of the regions. Therefore, we
explore the risk associated with a 1.0–2.0 °C temperature change
around the rangewide average air temperature, but only consider
a 1.0 °C change for the subregions.

Rangewide SWE Vulnerability to 1.0–2.0 °C Increase
Fig. 3 (Top Left) presents the rangewide SWE distribution
sampled for various temperatures including ±0.5, ±0.75,
and ±1.0 °C about the mean. These temperatures correspond to
1.0, 1.5, and 2.0 °C changes centered on hTai, respectively. The

Fig. 2. Scatterplots of annual SWE volume and zc values on 1 April where
the shading of the circles represents the average winter temperature for
each of the 32 y. Correlation coefficients (and P values) between the SWE
volume and centroid are shown. Plus signs demarcate the 25th, 50th, and
75th quartiles along the respective axes. Dashed lines demarcate the long-
term average values. (Bottom Right) Average winter temperature distribu-
tion for each region. Whiskers span the range of the data. Long-term av-
erages are indicated with “×” symbols.
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SWE distributions that are generated for cooler (warmer) tem-
peratures than the 32-y average are blue (red), while the black
curve denotes the SWE distribution corresponding to hTai. The
probability density functions (PDFs) become more strongly
skewed toward smaller SWE values with increasing tempera-
tures, indicating that less SWE is more probable with warmer
temperatures (Fig. 3, Top Left). The likelihood that the long-
term average SWE volume (dashed line) will be exceeded de-
creases with warming as Fig. 3 (Bottom Left) summarizes.
For a 1.0 °C change from 0.5 °C below to 0.5 °C above the

mean value, it becomes 20.7% less likely that the SWE volume
will be larger than its long-term average value hSWEi, which
corresponds to exceedance probabilities of 54.3% at −0.6 °C and
33.7% at 0.4 °C. As the temperature change about the mean
increases to 1.5 and 2.0 °C, the likelihood of exceeding the av-
erage SWE further decreases. For a 1.5 °C increase (from −0.9 to
0.6 °C), it is 31.0% less likely that the long-term SWE will be
exceeded, with ∼0.6 °C corresponding to an exceedance proba-
bility of 30.4%. Similarly for a 2.0 °C change, it is 41.1% less
likely that the SWE volume will be larger than hSWEi when the
temperature changes from −1.1 °C (Pe = 68.4%) to 0.9 °C
(Pe = 27.3%). Therefore, the change in the exceedance proba-
bility for 2.0 °C is ∼1.3 and 2.0 times larger than for the 1.5 and
1.0 °C changes, respectively.
We similarly assess the vulnerability of the SWE centroid in

Fig. 3 (Right) for the same temperatures. As evident in Fig. 3
(Top Right), the distribution of zc shifts toward higher elevations
when warmer winters occur. This shift is consistent with the in-
verse relationship observed in Fig. 2 between the SWE volume
and its centroid, causing the PDFs in Fig. 3 (Top Left) to shift
toward lower SWE values and those in Fig. 3 (Top Right) to shift
toward higher elevations under warmer conditions. As a result,
Fig. 3 (Bottom Right) shows that for the colder than average
temperatures considered, the probability that the SWE centroid
is lower than its 32-y average value ranges from 98.3% (at
hTai− 1.0  ∘C) to 82.8% (at hTai− 0.5  ∘C). It drastically decreases

to 22.1% at hTai+ 0.5  ∘C and 8.5% at hTai+ 1.0  ∘C for warmer
than average temperatures. A temperature 1.0 °C above hTai is
5.8% and 13.7% less likely to have a lower than average centroid
than when the winter temperature is 0.75 and 0.5 °C above hTai,
respectively. Overall, increases in the winter temperature of 1.0,
1.5, and 2.0 °C about 〈Ta〉 result in changes in the nonexceedance
probabilities of −60.6%, −79.3%, and −89.8%, respectively (Fig. 3,
Right).
Under warmer atmospheric conditions, it is highly probable that

the centroid will be forced to higher elevations than its long-term
historical location. Also, less of the snowpack will be monitored
within the existing in situ network since the centroid will likely
reside above the majority of in situ sites, sampling less of the 1
April SWE distribution. Changes in the distribution of montane
SWE will present new challenges for monitoring the SWE storage
and forecasting the potential spring/summer runoff. These find-
ings emphasize the importance of generating, maintaining, and
improving near-real-time–distributed SWE data.

Regional Analysis
Hereafter, we consider an increase of 1.0 °C about hTai for each
region, which represents an overall warming accounting for
spatial variability. It facilitates a comparison of the vulnerability
of each region to the same amount of warming by identifying
areas that are the most susceptible to increased temperature and
quantifying associated changes in the SWE distributions.

Regional SWE Volume Vulnerability to 1.0 °C Increase
Fig. 4 (Left, rows 1–4) shows the regional SWE volume distri-
butions for the mean winter temperature (black) and 0.5 °C
above (red) and below (blue) hTai. Similar to the rangewide
SWE patterns in Fig. 3 (Top Left), the positively skewed SWE
distributions in Fig. 4 (Left, rows 1–4) indicate that warmer
temperatures result in a higher probability of having smaller
SWE volumes. For 1.0 °C of warming about the mean, the
exceedance probability (Fig. 4, Bottom Left) decreases from
58.5% (at hTai− 0.5  ∘C) to 28.2% (at hTai+ 0.5  ∘C) in the NW, a
reduction in the likelihood of exceedance of 30.3%. For com-
parison, the rangewide decrease in Pe is from 54.3% to 33.7% for
1.0 °C of warming about its mean (Bottom Left, Figs. 3 and 4).
As shown in Fig. 4 (Bottom Left),1.0 °C of warming reduces the

likelihood of above average SWE in the SW and SE, which have
the coldest winters on average, by 17.6% and 14.0%, re-
spectively. However, at temperatures 0.5 °C below hTai, the SW
and SE have the lowest Pe values at 53.1% and 48.2%, re-
spectively. Overall, with warmer temperatures it becomes less
probable that larger than average SWE volumes will accumulate.
Consistent with previous studies (e.g., refs. 28–30), we find that
the spring snowpack in the northern Sierra Nevada is more
vulnerable to warming given its larger changes in exceedance
probabilities than in the southern region. With lower elevations
and typically warmer winters, the NW and NE, respectively,
undergo changes in the exceedance probabilities of −30.3%
and −28.8% highlighting their greater sensitivity to temperature.
This Pe reduction from 0.5 °C below to 0.5 °C above hTai is also
more severe along the western slope than on the eastern side
(i.e., NW vs. NE and SW vs. SE).
Since all regions have average winter temperatures spanning −

0.5 to +0.5 °C (Fig. 2), we also investigate the SWE response to
warming across this 1.0 °C range in SI Appendix, Text S1.

Regional SWE Centroid Vulnerability to 1.0 °C Increase
As the winter temperature increases from 0.5 °C below (blue) to
0.5 °C above (red) the mean in Fig. 4 (Right, rows 1–4), the
distribution of centroid values shifts toward the right. A shift
toward higher elevations was also shown at the mountain range
scale (Fig. 3, Top Right). Alike at the range scale, the order of the
temperature-conditioned PDFs for the centroid is reversed

Fig. 3. Impact of 1.0, 1.5, and 2.0 °C of variability about the long-term
average winter temperature in the Sierra Nevada. (Top) PDFs for range-
wide 1 April SWE (Left) and zc (Right) given select average winter temper-
atures. Dashed lines demarcate the long-term average SWE and zc values
(same as Fig. 2). Limits of x axes are set to the data limits. (Bottom Left) The
likelihood that the SWE volume is larger than the long-term average SWE at
different temperatures. (Bottom Right) The likelihood that zc is lower than
its long-term average given the same temperatures.
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relative to those for SWE as shown in Fig. 4 (Right and Left, rows
1–4, respectively). As the snow-covered area and SWE volume
are reduced with increasing temperature from 0.5 °C below to
0.5 °C above the 32-y average temperature, there is a greater
chance that the center of mass of the SWE volume will be stored
at higher elevations in the mountain range (i.e., the non-
exceedance probability, Pne, decreases).
As Fig. 4 (Right, rows 1–4) demonstrates, the PDFs repre-

senting the distribution of centroid values associated with a
temperature of hTai is nearly centered on the long-term average
centroid, except in the SE where the global mode of the centroid
distribution for hTai− 0.5  ∘C is closer to hzci. The centroid dis-
tributions associated with hTai− 0.5  ∘C and hTai+ 0.5  ∘C are
shifted toward lower and higher elevations than hzci, respectively.
Hence the distribution of the centroid values in the SE tends to
differ the most from the other regions in this respect, resulting in
the SE having the lowest Pne values at hTai− 0.5  ∘C (Fig. 4,
Bottom Right). The Pne decreases by 33.0% in the SE for 1.0 °C of
warming, whereas the decrease is >45.0% across all other re-
gions. Although the reduction in the SE is the lowest, the Pne
value of 21.7%, for a temperature of 0.5 °C above the mean, is
comparable to the NW, SW, and rangewide values.
Fig. 4 (Right, rows 1 and 5) indicates that there is a 92.3%

chance that the centroid will be lower than 2,101 m when the

average winter temperature is 0.1 °C (i.e., 0.5 °C below hTai) in
the NW and only a 22.0% chance at 1.1 °C, which amounts to a
decrease in the Pne of 70.3% for 1.0 °C of warming. As mentioned
above, the change in the rangewide nonexceedance probability is
also large (i.e., −60.6%) for a 1.0 °C increase from −0.6 °C. Both
the NW and rangewide changes in the Pne values subject to 1.0 °C
of warming are substantial given the lower risks in the NE, SW,
and SE, where the changes in nonexceedance probabilities are
−52.8%, −45.6%, and −33.0%, respectively.
Alike the analysis for the SWE volume, we also consider a

1.0 °C change about 0 °C for the centroid in SI Appendix, Text S2.

Conclusion
As temperatures are projected to rise across California, a key
question emerges: To what extent do hydrologic variables re-
spond to different levels of warming? Hence, we characterize the
range of historical snowpack responses given 1.0–2.0 °C of
warming across the Sierra Nevada. The response is magnified as
the amount of warming increases, which is demonstrated by it
becoming less likely for the SWE volume (centroid) to be larger
(lower) than its long-term average value for a 2.0 °C versus 1.5 or
1.0 °C change about the long-term mean temperature. We show
that the change in the likelihood of above average SWE for a
2.0 °C change is twice as large as that for a 1.0 °C change,
whereas the change in the likelihood of a lower than average
SWE centroid for a 2.0 °C change is ∼1.5 times larger than for a
1.0 °C change. Although we do not use climate projections, re-
sults highlight the significance of even small changes in tem-
perature (e.g., 1.5 °C vs. 2.0 °C of warming). Also, point-scale
measurements alone cannot yield robust estimates of the mon-
tane SWE centroid as done here, which provide valuable in-
formation for water managers.
Using a multivariate approach that is adaptable to other SWE

characteristics and hydrometeorological forcings, we probabilis-
tically identify water resources vulnerabilities to provide insight
into plausible SWE responses to climate change. The northern
Sierra Nevada exhibits a greater susceptibility to warming than
the southern portion, where the change in the likelihood of
above average SWE given 1.0 °C of warming is twice as large in
the NW as in the SE. The larger northern response poses risk for
increased future wildfire activity given that the region has his-
torically been vulnerable to wildfires with shifts in snowmelt
timing (31). Warmer winters reduce the 1 April SWE and force
its centroid to higher elevations above the majority of the in situ
network, which can have major implications in water resources
management, flood control, hydropower generation, etc. Given
the generality of our framework, our model can be applied to
other snow-covered mountain ranges across the globe.

Materials and Methods
Snow and Temperature Data.We use the SWE and air temperature maps from
the Sierra Nevada snow reanalysis (23), which was generated by assimilating
Landsat fractional snow-covered area images within a Bayesian framework
(32) across the range. To generate the reanalysis, an ensemble of meteo-
rological fields (e.g., air temperature, humidity, precipitation, etc.), derived
from the North American Land Data Assimilation System phase 2 (NLDAS-2,
ref. 33), forced the forward land surface model runs. As shown by Walton
and Hall (34), the NLDAS-2 minimum and maximum temperature climatol-
ogies are biased relative to station observations. However, our modeling
framework relies on relative relationships between temperature and SWE
(see Conditional Multivariate Model below).

The posterior SWE from the snow reanalysis has been highly verified
against snow pillows and courses since these observations were not assimi-
lated (10, 23). Margulis et al. (23) found that the 1 April SWE has a mean
difference (MD) and root-mean-squared difference (RMSD) less than 3 and
13 cm, respectively, relative to collocated snow pillows and courses. Huning
and Margulis (10) further demonstrated that the winter cumulative snowfall
derived from this data set has a MD and RMSD of −4 and 12 cm, respectively,
relative to collocated snow pillows.

Fig. 4. PDFs for regional 1 April SWE (Left, rows 1–4) and zc (Right, rows 1–
4) given select average winter temperatures. Dashed lines demarcate the
long-term average values (same as Fig. 2). Limits of x axes (rows 1–4) are set
to the data limits in both columns. (Bottom Left) The likelihood that the SWE
volume is larger than the long-term average SWE at different temperatures
(from 0.5 °C below to 0.5 °C above of the long-term mean). (Bottom Right)
The likelihood of zc being lower than the long-term average centroid given
the same temperature conditions. The rangewide curves in the bottom row
are also shown in the bottom row of Fig. 3.
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Conditional Multivariate Model. We use a probability risk model, similar to
that described by Madadgar et al. (35), to compute the likelihood that the
1 April SWE volume exceeds its long-term average value ÆSWEæ, (i.e.,
SWE> ÆSWEæ) given the average winter air temperature (Ta = ta1, ta2, ...).
Similarly, the elevation of the 1 April SWE volume centroid (zc) is also ex-
amined. However, given the negative correlation between the SWE volume
and zc (discussed above), the exceedance and nonexceedance probabilities
are computed for SWE and zc, respectively, to maintain physical consistency.
Therefore, the model computes the probability that the SWE volume will be
larger than ÆSWEæ, whereas it quantifies the likelihood that the centroid of
the SWE volume will be located at an elevation lower than the long-term
average SWE centroid Æzcæ. The model utilizes region-specific thresholds to
account for the various regional physiographic features (e.g., elevation) that
contribute to variability of the SWE volume and zc.

We describe the joint probability distribution between temperature Ta
and the response variable Y (i.e., SWE volume or centroid) using a bivariate
copula function as follows:

FTaYðta, yÞ=C½FTaðtaÞ, FY ðyÞ�, [1]

where C is the cumulative distribution function (CDF) of the bivariate copula
and FTa and FY are marginal CDFs of Ta and Y, respectively. The copula joins
multiple random variables (Ta and Y) through their marginal distributions.
The conditional PDF is given by

fY jTaðyjtaÞ= c½FTaðtaÞ, FY ðyÞ� · fY ðyÞ, [2]

where c is the PDF of the bivariate copula function and fY is the marginal
PDF of Y. Our multivariate model depends on individual ranks of each data
point (i.e., relative relationships). Copulas provide a framework for exam-
ining the underlying dependence structure of multiple variables. They serve

as a mapping tool from the variable space into another space [0, 1], where
the dependence structure is determined and the joint probabilities are built
and then transformed back into the original/variable space (36).

We consider commonly used copula functions including Gaussian, Frank,
and Clayton (36) for describing the correlation structure between variables: (i)
SWE and Ta and (ii) zc and Ta. We use a Markov Chain Monte Carlo (MCMC)
sampling approach to select the model parameters following Sadegh et al.
(36) for each region and pair of variables. Using this approach, we compute
the maximum likelihood, Akaike and Bayesian information criteria, Nash–
Sutcliff efficiency, and RMSD. The selected copulas (SI Appendix, Table S1)
yield the most optimal values of these criteria and have a single parameter,
which minimizes additional uncertainty via multiple parameters.

SI Appendix, Fig. S1 shows the posterior distribution of parameter values
for the fitted copulas from the MCMC simulations, which includes un-
certainty from the number of years used here. Our multivariate model is
built with the parameter values corresponding to the maximum likelihood
from the MCMC simulations (black line). SI Appendix, Fig. S2 indicates that
uncertainty associated with the multivariate model parameters (SI Appen-
dix, Fig. S1) results in low uncertainty in the derived conditional PDFs and
probabilities for all regions. SI Appendix, Fig. S3 shows the data (red dots)
with the conditional Pe and Pne values (shading) for SWE (Left) and zc (Right),
respectively.

The snow reanalysis can be obtained from https://margulis-group.github.
io/data/.
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